If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-10x+1=0
a = 7; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·7·1
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{2}}{2*7}=\frac{10-6\sqrt{2}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{2}}{2*7}=\frac{10+6\sqrt{2}}{14} $
| 47-19=4(x-4)= | | |2a+9|=|3a-3| | | 6a+5;a=5 | | 5x-34=(2)x+4 | | 24+3y-6=13y-14-2y= | | x+24+3x=-18-3x-21= | | 66=5.5x | | 8x-2(x+7=16 | | 2.5/6=a/3.2 | | 262=107-x | | 2x^2−9x=4-11 | | (3g+44)+(5g-12)=120 | | 9x-59=(2)3x-4 | | 24-6x=16+2x= | | (3g+44)+(5g-12)=180 | | 6x+14=2x+2= | | -12=9=3w | | (9x-8)+(2x+2)+(3x+4)=180 | | 2x2−9x+11=4 | | 2x^2−9x+11=4 | | 16=w/3+14 | | 4-3x=2x+11 | | 2(3x-4)-(2x+4)=3x-3 | | 4x^2-10=4x-74x2−10=4x−7 | | 2(4w−3)+2w=54 | | 13-42=3(x-4)-8= | | (x+14)+(5x-2)+(x-1)=180 | | 11(x-3)=-3-8= | | a+20=34 | | 50-b=20 | | W+y=-1 | | 20-a=12 |